Penelitian Teknologi Informasi (TI) cukup berbeda dengan penelitian di bidang sosial kemasyarakatan. Umumnya penelitian TI tidak mempunyai metodelogi yang jelas, tidak ada pembuatan kuesioner, tidak ada pengolahan data dan hanya sedikit yang mencakup analisa hasil. Penelitian di bidang TI, sepanjang yang pernah saya amati, bisa mencakup beberapa jenis penelitian termasuk:
Penelitian Murni TI: Penelitian jenis ini merupakan penelitian yang berusaha memecahkan permasalahan-permasalahan yang muncul terkait bidang TI dengan mencari solusi-solusi yang bersifat fundamental. Umumnya penelitian ini banyak berkecimpung mempelajari teori-teori yang ada untuk dapat mengembangkan teori-teori fundamental terkait lainnya. Beberapa penelitian yang bisa termasuk di dalam cakupan ini antara lain pengembangan:
Metodologi pengembangan sistem informasi
Metodologi pembuatan data warehouse
Metode-metode data mining/soft-computing
Konsep jaringan
Metode searching
Teori Optimasi
Metode Pemilihan Variabel
Sistem keamanan jaringan
Metode enkripsi dekripsi
Bahasa pemrograman
Metode penyimpan data
Metode pengolahan citra
Metode pengenalan pola
Among others
Penelitian Terapan TI: Penelitian terapan di bidang TI lebih mengacu pada penelitian yang memanfaatkan teori atau metode, yang telah dikembangkan orang lain dalam cakupan penelitian murni TI, di dalam pengembangan penelitian lanjutan. Beberapa penelitian yang bisa dimasukkan di dalam cakupan penelitian ini antara lain pengembangan:
Sistem kontrol berbasis soft-computing
Hardware yang menerapkan metode penyimpanan data baru
Metode analisa kedokteran berbasis soft-computing
Penelitian yang membandingkan antara teori/metode
Sistem operasi yang berbasis open source
Sistem database dengan sistem indexing data baru
Metode peningkatan efektifitas jaringan berbasis data mining
Sistem pencarian dengan metode searching baru
Word processing dengan metode spell checker baru
Sistem database dengan metode penyimpan data baru
Aplikasi pengolahan citra dengan metode pengolahan baru
Aplikasi pemodelan data yang mengakomodasi metode baru
Program-program (DLL atau JSP) untuk metode tertentu
Bioinformatics dan Biomedik
Penerapan Metode TI di Bidang Lain (Ekonomi, Sosial dll)
Among others
Penelitian Pengembangan Sistem: Sistem yang dimaksud di sini merefer pada sistem yang dapat dipergunakan langsung oleh pengguna seperti sistem informasi dan sistem jaringan. Penelitian jenis ini umumnya berusaha menerapkan berbagai teori atau metode yang telah dikembangkan baik dalam cakupan penelitian murni maupun penelitian terapan seperti sistem database, bahasa pemrograman, konsep jaringan dan lain-lain. Penelitian yang tercakup umumnya mencakup pengembangan sistem untuk tujuan perorangan/komunitas tertentu seperti pengembangan:
Sistem informasi keuangan
Sistem pakar
Sistem pendukung keputusan
Sistem data warehouse
Sistem digital library
Sistem mobile dictionary
Sistem jaringan berbasis open source
Among others
Dibandingkan dengan penelitian murni dan terapan bidang TI, penelitian jenis ini sekarang ini kelihatannya masih lebih banyak diminati oleh mahasiswa TI Indonesia dalam proses penyelesaian kegiatan belajar mereka. Penelitian jenis ini juga sudah jelas tata cara pelaksanaannya, karena metodologi pengembangan sistem umumnya sudah pernah diusulkan dalam tahapan penelitian murni.
Penelitian Terkait Penggunaan dan Manajemen TI: Belakangan ini, dengan berkembangnya penerapan TI di masyarakat, keilmuan tentang efektivitas penggunaan dan keilmuan di bidang manajemen TI juga semakin berkembang. Penelitian terkait dengan keilmuan-keilmuan tersebut juga banyak dilakukan. Walaupun masih dalam ruang lingkup TI, penelitian jenis ini mungkin lebih banyak dikaitkan dengan penelitian bidang sosial kemasyarakatan, karena yang menjadi objek penelitian biasanya adalah user/pengguna TI, administrator TI atau provider TI. Sehingga kemungkinan untuk menerapkan metodologi penelitian seperti halnya penelitian di bidang sosial kemasyarakatan sangat besar.
Mungkin ada yang masih memperdebatkan apakah kegiatan pengembangan sistem termasuk sebagai suatu kegiatan penelitian atau tidak. Kalau dilihat dari definisi dari kata penelitian (research) itu sendiri yaitu:
Research is a human activity based on intellectual investigation and is aimed at discovering, interpreting, and revising human knowledge on different aspects of the world. Research can use the scientific method, but need not do so.(sumber: http://en.wikipedia.org/wiki/Research)
kegiatan penelitian pada hakekatnya mempunyai tujuan untuk menemukan, menginterpretasikan ataupun merevisi pengetahuan yang ada di masyarakat. Sehingga, penelitian yang melibatkan kegiatan pengembangan sistem, karena tidak mencakup unsur menemukan, menginterpretasikan ataupun merevisi pengetahuan masyarakat, memang masih bisa menjadi bahan perdebatan apakah kegiatan tersebut bisa dimasukkan ke dalam kegiatan penelitian bidang TI atau tidak.
Mengikuti perkembangan pendidikan tinggi TI Indonesia dan merefer bahwa, pengembangan sistem masih banyak diminati oleh mahasiswa TI di Indonesia sebagai bahan skripsi, saya sendiri secara pribadi berpendapat bahwa pengembangan sistem yang dilakukan dalam tatanan perkuliahan masih termasuk dalam pengerjaan projek (assignment) dari suatu perkuliahan, yang mungkin hanya bisa dijadikan tugas akhir (projek akhir) dari mahasiswa dengan level di bawah S1 (D1, D2, dan D3).
data from :http://yudiagusta.wordpress.com/2008/03/10/penelitian-teknologi-informasi-ti/
adalah SMP favorit yang terletak di kota denpasar. SMPN 1 denpasar, adalah sekolah bertaraf internasional, yang memiliki kelebihan dan kekurangan. Contoh keburukannya adalah di beberapa tempat masih terlihat kotor dan jorok, juga kamar mandinya.
Namun, bagaimanapun juga, SMPN 1 telah memenangkan banyak perlombaan dan olimpiade di luar sana. Guru-guru dan juga para staf SMPN 1 juga, sangat baik dan handal sekali dalam melaksanakan tugasnya.
A computer is a machine that manipulates data according to a list of instructions.
The first devices that resemble modern computers date to the mid-20th century (1940–1945), although the computer concept and various machines similar to computers existed earlier. Early electronic computers were the size of a large room, consuming as much power as several hundred modern personal computers (PC).Modern computers are based on tiny integrated circuit and are millions to billions of times more capable while occupying a fraction of the space. Today, simple computers may be made small enough to fit into a wristwatch and be powered from a watch battery. Personal computers, in various forms, are icons of the Information Age and are what most people think of as "a computer"; however, the most common form of computer in use today is the embedded computer. Embedded computers are small, simple devices that are used to control other devices — for example, they may be found in machines ranging from fighter aircraft to industrial robots, digital cameras, and children's toys.
The ability to store and execute lists of instructions called programs makes computers extremely versatile and distinguishes them from calculators. The Church–Turing thesis is a mathematical statement of this versatility: any computer with a certain minimum capability is, in principle, capable of performing the same tasks that any other computer can perform. Therefore, computers with capability and complexity ranging from that of a personal digital assistant to a supercomputer are all able to perform the same computational tasks given enough time and storage capacity.
History of computing
It is difficult to identify any one device as the earliest computer, partly because the term "computer" has been subject to varying interpretations over time. Originally, the term "computer" referred to a person who performed numerical calculations (a human computer), often with the aid of a mechanical calculating device.
The history of the modern computer begins with two separate technologies - that of automated calculation and that of programmability.
Examples of early mechanical calculating devices included the abacus, the slide rule and arguably the astrolabe and the Antikythera mechanism (which dates from about 150-100 BC). Hero of Alexandria (c. 10–70 AD) built a mechanical theater which performed a play lasting 10 minutes and was operated by a complex system of ropes and drums that might be considered to be a means of deciding which parts of the mechanism performed which actions and when. This is the essence of programmability.
The end of the Middle Ages saw a re-invigoration of European mathematics and engineering, and Wilhelm Schickard's 1623 device was the first of a number of mechanical calculators constructed by European engineers. However, none of those devices fit the modern definition of a computer because they could not be programmed.
In 1801, Joseph Marie Jacquard made an improvement to the textile loom that used a series of punched paper cards as a template to allow his loom to weave intricate patterns automatically. The resulting Jacquard loom was an important step in the development of computers because the use of punched cards to define woven patterns can be viewed as an early, albeit limited, form of programmability.
It was the fusion of automatic calculation with programmability that produced the first recognizable computers. In 1837, Charles Babbage was the first to conceptualize and design a fully programmable mechanical computer that he called "The Analytical Engine".Due to limited finances, and an inability to resist tinkering with the design, Babbage never actually built his Analytical Engine.
During the first half of the 20th century, many scientific computing needs were met by increasingly sophisticated analog computers, which used a direct mechanical or electrical model of the problem as a basis for computation. However, these were not programmable and generally lacked the versatility and accuracy of modern digital computers.
A succession of steadily more powerful and flexible computing devices were constructed in the 1930s and 1940s, gradually adding the key features that are seen in modern computers. The use of digital electronics (largely invented by Claude Shannon in 1937) and more flexible programmability were vitally important steps, but defining one point along this road as "the first digital electronic computer" is difficult (Shannon 1940).
Stored program architecture
The defining feature of modern computers which distinguishes them from all other machines is that they can be programmed. That is to say that a list of instructions (the program) can be given to the computer and it will store them and carry them out at some time in the future.
In most cases, computer instructions are simple: add one number to another, move some data from one location to another, send a message to some external device, etc. These instructions are read from the computer's memory and are generally carried out (executed) in the order they were given. However, there are usually specialized instructions to tell the computer to jump ahead or backwards to some other place in the program and to carry on executing from there. These are called "jump" instructions (or branches). Furthermore, jump instructions may be made to happen conditionally so that different sequences of instructions may be used depending on the result of some previous calculation or some external event. Many computers directly support subroutines by providing a type of jump that "remembers" the location it jumped from and another instruction to return to the instruction following that jump instruction.
Program execution might be likened to reading a book. While a person will normally read each word and line in sequence, they may at times jump back to an earlier place in the text or skip sections that are not of interest. Similarly, a computer may sometimes go back and repeat the instructions in some section of the program over and over again until some internal condition is met. This is called the flow of control within the program and it is what allows the computer to perform tasks repeatedly without human intervention.
Comparatively, a person using a pocket calculator can perform a basic arithmetic operation such as adding two numbers with just a few button presses. But to add together all of the numbers from 1 to 1,000 would take thousands of button presses and a lot of time—with a near certainty of making a mistake. On the other hand, a computer may be programmed to do this with just a few simple instructions.
Programs
In practical terms, a computer program may run from just a few instructions to many millions of instructions, as in a program for a word processor or a web browser. A typical modern computer can execute billions of instructions per second (gigahertz or GHz) and rarely make a mistake over many years of operation. Large computer programs comprising several million instructions may take teams of programmers years to write, thus the probability of the entire program having been written without error is highly unlikely.
Errors in computer programs are called "bugs". Bugs may be benign and not affect the usefulness of the program, or have only subtle effects. But in some cases they may cause the program to "hang" - become unresponsive to input such as mouse clicks or keystrokes, or to completely fail or "crash". Otherwise benign bugs may sometimes may be harnessed for malicious intent by an unscrupulous user writing an "exploit" - code designed to take advantage of a bug and disrupt a program's proper execution. Bugs are usually not the fault of the computer. Since computers merely execute the instructions they are given, bugs are nearly always the result of programmer error or an oversight made in the program's design.
In most computers, individual instructions are stored as machine code with each instruction being given a unique number (its operation code or opcode for short). The command to add two numbers together would have one opcode, the command to multiply them would have a different opcode and so on. The simplest computers are able to perform any of a handful of different instructions; the more complex computers have several hundred to choose from—each with a unique numerical code. Since the computer's memory is able to store numbers, it can also store the instruction codes. This leads to the important fact that entire programs (which are just lists of instructions) can be represented as lists of numbers and can themselves be manipulated inside the computer just as if they were numeric data. The fundamental concept of storing programs in the computer's memory alongside the data they operate on is the crux of the von Neumann, or stored program, architecture. In some cases, a computer might store some or all of its program in memory that is kept separate from the data it operates on. This is called the Harvard architecture after the Harvard Mark I computer. Modern von Neumann computers display some traits of the Harvard architecture in their designs, such as in CPU caches.
While it is possible to write computer programs as long lists of numbers (machine language) and this technique was used with many early computers, it is extremely tedious to do so in practice, especially for complicated programs. Instead, each basic instruction can be given a short name that is indicative of its function and easy to remember—a mnemonic such as ADD, SUB, MULT or JUMP. These mnemonics are collectively known as a computer's assembly language. Converting programs written in assembly language into something the computer can actually understand (machine language) is usually done by a computer program called an assembler. Machine languages and the assembly languages that represent them (collectively termed low-level programming languages) tend to be unique to a particular type of computer. For instance, an ARM architecture computer (such as may be found in a PDA or a hand-held videogame) cannot understand the machine language of an Intel Pentium or the AMD Athlon 64 computer that might be in a PC.
Though considerably easier than in machine language, writing long programs in assembly language is often difficult and error prone. Therefore, most complicated programs are written in more abstract high-level programming languages that are able to express the needs of the computer programmer more conveniently (and thereby help reduce programmer error). High level languages are usually "compiled" into machine language (or sometimes into assembly language and then into machine language) using another computer program called a compiler. Since high level languages are more abstract than assembly language, it is possible to use different compilers to translate the same high level language program into the machine language of many different types of computer. This is part of the means by which software like video games may be made available for different computer architectures such as personal computers and various video game consoles.
The task of developing large software systems is an immense intellectual effort. Producing software with an acceptably high reliability on a predictable schedule and budget has proved historically to be a great challenge; the academic and professional discipline of software engineering concentrates specifically on this problem.
How computers work
A general purpose computer has four main sections: the arithmetic and logic unit (ALU), the control unit, the memory, and the input and output devices (collectively termed I/O). These parts are interconnected by busses, often made of groups of wires.
The control unit, ALU, registers, and basic I/O (and often other hardware closely linked with these) are collectively known as a central processing unit (CPU). Early CPUs were composed of many separate components but since the mid-1970s CPUs have typically been constructed on a single integrated circuit called a microprocessor.
oke, menurutku itu udah cukup banyak. untuk info lebih lanjut, kalian dapat lihat di http://wikipedia.org/
Perangkat Yang Digunakan Dalam TIK KOMPONEN-KOMPONEN UTAMA KOMPUTER
Komponen utama komputer merupakan bagian yang harus ada dalam sebuah sistem komputer, karena dalam sebuah sistem komputer jika satu saja dari komponen utama tersebut tidak ada, maka sistem komputer pun tidak akan berjalan atau tidak befungsi sebagaimana yang diharapkan Komponen utama dalam sistem komputer ada tiga yaitu:
1. Hardware 2. Software 3. Brainware
Hardware
Hardware atau perangkat keras dalam sistem komputer merupakan komponen yang secara fisik dapat dilihat dan diraba yang membentuk suatu kesatuan sehingga dapat difungsikan. Perangkat tersebut antara lain adalah:
1. Keyboard 2. Mouse 3. CPU 4. Monitor 5. Printer
Software
Software atau perangkat lunak adalah suatu program yang berisi instruksi-instruksi (perintah) yang dimengerti oleh komputer. Perangkat komputer yang terdiri dari jutaan komponen elektronik tidak dapat melakukan kegiatan apapun tanpa adanya software. Dengan adanya software ini kita dapat meminta pada komputer untuk : mengetik suart/dokumen, menghitung, menggambar, megeluarkan suara dan lain sebagainya.
Software dapat dibedakan berdasarkan fungsinya antara lain yaitu:
1. Sistem Operasi
2. Aplikasi
Sistem Operasi
Software Sistem Operasi, berfungsi sebagai :
* Interpreter yaitu: Menterjemahkan perintah dari software aplikasi kedalam perintah yang di mengerti oleh computer * Configurasi Hardware yaitu: Mengenal peralatan pendukung komputer (pheriperal) * Manajemen File yaitu: Pengolahan File (data dan program). Contoh sistem operasi: Windows, Linux, dll
Aplikasi
Software Aplikasi ini dikelompokan berdasarkan fungsi atau bidang pekerjaan yang dilakukan, Software aplikasi yang umum ada di pasaran antara lain :
Pengolah Kata (Word Processing) Contoh: Microsoft Word, Word Perfect, Open Office, dll Pengolah Angka atau Data tabel (Spreadsheet) Contoh: Microsoft Excel, Lotus 123, Super Calc, dll Pengolah Database Contoh: Microsoft Access, Fox Pro, dll Membuat Slide Presentasi Contoh: Microsoft Power Print, Story Board, dll Pengolah Gambar Contoh: Adobe Photoshop, ACD See dll Java Bahasa Pemrograman Contoh: Pascal, Java, Visual Basic, dll Game (Software Permainan) Contoh : PC Game Dan lain sebagainya
Brainware
Brainware yaitu pemakai komputer atau orang yang mengoperasikan komputer (User), karena secanggih apapun komputer jika tidak ada orang mengopersikan (user) nya maka komputer tersebut tidak dapat digunakan. User atau pemakai komputer ada 3 tingkatan yaitu:
* Sistem Analis * Programer * Operator
Interaksi antara Komponen
Dari ketiga komponen dalam sebuah sistem komputer yaitu Hard ware, Soft ware dan Brainware, satu dengan lainya saling berkaitan erat. Jika satu komponen saja tidak ada maka sistem komputer tidak dapat berjalan. Karena komputer hanya merupakan rangkaian komponen-komponen elektronik yang dapat berfungsi atau bekerja bila semua komponen utama-nya saling mendukung. Ketiga komponen pengolah data dalam sebuah sistem komputer dapat digambarkan seperti pada gambar di samping.
Thank's to Allah SWT , berkat karuniaMu lah, semua ini bisa terjadi. (gue kan' anak yang ber-Iman) WHAT ?!
Thanks to frends, yang udah ngasih gue ide dan inspirasi (bahasanya kacau) :P
sebenernya, gue nggak tertarik buat bikin blog atau sejenisnya. Tapi, seseorang (siapa itu ?) mengenalkan gue pada dunia maya, n' akhirnya gue jadi addicted banget sekarang.
Thanks to my brotha, Ivan ! yippe ! adikmu ini telah berhasil menjadi penerusmu . [maksud?]
gue bakal usahain (garis bawahi USAHAIN) buat rajin" ngurus blog, biar engga terlantar seperti FS gue yang terdahulu banget. Berarti usaha gue sia" dong ! :P
ehm, ucapan terima kasih gue yang terakhir adalah kepada semua anggota A5G, berkat ke-gokilan kalian setiap harinya, gue bisa semangat lagi !
Thanks juga buat tugas bikin blog-nya, kalo' ngga demi tugas, gue ngga yakin bakal kepikiran buat bikin blog. ~hahaha. :))
Name : Nadia Karina, panggil Nadia ajja. Kelas : IXP/ SMPN 1 Denpasar No.Absen : 12
aku cewek yang lahir di denpasar pada tanggal 7 Januari 1995. Tentu aja dengan selamat, sehat dan sentosa. :))